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Abstract

Direct estimation of cardiac ventricular volumes has become increasingly popular and important in cardiac function analysis due to
its effectiveness and efficiency by avoiding an intermediate segmentation step. However, existing methods rely on either intensive
user inputs or problematic assumptions. To realize the full capacities of direct estimation, this paper presents a general, fully
learning-based framework for direct bi-ventricular volume estimation, which removes user inputs and unreliable assumptions. We
formulate bi-ventricular volume estimation as a general regression framework which consists of two main full learning stages:
unsupervised cardiac image representation learning by multi-scale deep networks and direct bi-ventricular volume estimation by
random forests.

By leveraging strengths of generative and discriminant learning, the proposed method produces high correlations of around 0.92
with ground truth by human experts for both the left and right ventricles using a leave-one-subject-out cross validation, and largely
outperforms existing direct methods on a larger dataset of 100 subjects including both healthy and diseased cases with twice the
number of subjects used in previous methods. More importantly, the proposed method can not only be practically used in clinical
cardiac function analysis but also be easily extended to other organ volume estimation tasks.

Keywords: Direct volume estimation, multi-scale deep networks, random forests, regression.

1. Introduction

Accurate and automatic assessment of cardiac functions
plays an increasingly important role in diagnosis and prognosis
of heart diseases, one of the leading causes of death (Wang and
Amini, 2012). Cardiac ventricular volumes have been widely
used as a measurement of cardiac abnormalities and function-
s, e.g., ejection fraction (EF) and stroke volume (Wang et al.,
2009; Punithakumar et al., 2013; Marchesseau et al., 2013).
Conventional volume estimation methods usually rely on an
intermediate step of segmentation. However, segmentation it-
self is an extremely challenging problem which in clinical prac-
tise physicians are not interested in. Direct estimation methods
which remove the segmentation step become attractive in car-
diac function diagnosis and ventricular estimation due to its ef-
ficiency and clinical significance (Afshin et al., 2012a,b; Wang
et al., 2014; Afshin et al., 2014; Zettinig et al., 2014; Zhen
et al., 2014d; Wang et al., 2013; Zhen et al., 2015a). A com-
prehensive study of methods for cardiac ventricular volume es-
timation has been conducted in (Zhen et al., 2014c) showing
that direct estimation methods provide more accurate estima-
tion than segmentation-based methods for both LV and RV vol-
umes. More importantly, direct estimation allows us to lever-
age both the state-of-the-art machine learning techniques and
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increasingly large amount of labeled and unlabeled imaging da-
ta. In many applications, the performance of machine learning-
based automatic detection and diagnosis systems has shown to
be comparable to that of a well-trained and experienced radiol-
ogist (Wang and Summers, 2012). Direct methods also enable
us to richly explore data statistics which therefore helps provide
more meaningful and clinically significant volume estimation.

However, existing direct methods suffer from many draw-
backs, e.g., dependence on user inputs and unreliable assump-
tions, which severely restrict their applications. In this paper,
towards the full capacity of direct estimation, we propose a
general framework for bi-ventricular volume estimation. A pre-
liminary conference version of this work appeared in MICCAI
2014 (Zhen et al., 2014d). In this journal version we extend
in two main aspects: 1) we replace the handcrafted features in
(Zhen et al., 2014d) by feature engineering (Bengio et al., 2013)
with representation learned by our multi-scale deep network-
s. In contrast to feature engineering, the unsupervised learning
by deep networks allows us to both make full use of plenty of
unlabeled data which is largely available in medical imaging
and faithfully detect data-driven features for informative image
representations in specific tasks; 2) we provide a wider inves-
tigation on a larger dataset of 100 subjects with 6000 images
than previously used. Such as a large dataset encompasses the
huge inter-subject variabilities and therefore provides a more
comprehensive and clinically meaningful validation.
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1.1. Direct methods

Direct diagnosis has proven to be effective and efficient in
assessment of cardiac function abnormality automatically with-
out intermediate steps. Afshin et al. (Afshin et al., 2014)
present a direct method for regional assessment of the left ven-
tricular (LV) myocardial function via classification. Without
delineating regional boundaries of the LV, they obtain an ab-
normality assessment of each standard cardiac segment in real-
time with more accurate results than segmentation-based meth-
ods. A set of statistical MRI features, i.e., the Bhattacharyya
coefficients (Afshin et al., 2014) based on a measure of simi-
larity between image distributions are built for all the regional
segments and all subsequent frames. The statistical features are
related to the proportion of blood within each segment and can
characterize segmental contraction. Unfortunately, the method
requires user inputs for one frame of each subject and is re-
stricted to the LV, which limits its further application in clinical
use.

In addition to MR imaging, direct methods have also been de-
veloped in other modalities such as electrocardiograms (ECG)
for diagnosis of cardiac function abnormalities. Recently,
Zettinig et al. (2014) proposed a data-driven estimation of car-
diac electrical diffusivity from 12-lead ECG for diagnosis and
treatment of dilated cardiomyopathy (DCM). Instead of solv-
ing an inverse problem to find patient-specific parameters of
electrophysiology (EP) model, they propose to learn the inverse
function by formulating as a polynomial regression problem to
directly estimate model parameters for specific patients. The
ECG features are taken as the input of the regressor with model
parameters being the output.

Direct estimation of cardiac volumes has started to gener-
ate increasing interest due to the avoidance of intermediate seg-
mentation (Afshin et al., 2012a; Wang et al., 2014; Zhen et al.,
2014d). To directly estimate the ejection fraction of the LV,
global image statistics similar to (Afshin et al., 2012b, 2014)
are used to calculate LV volumes in (Afshin et al., 2012a). A
key limitation is that intensive user inputs including two box-
es, i.e., one inside the LV cavity and one enclosing the cavity,
are required. Moreover, the method is restricted to the LV due
to the strong assumption of correlation between the considered
statistics and LV cavity areas and therefore can not be general-
ized to the right ventricle (RV) or bi-ventricles, i.e., the LV and
RV.

Joint analysis of cardiac bi-ventricles within a single frame-
work is of great significance to cardiac function assessment and
disease diagnosis (Lötjönen et al., 2004; Hu et al., 2005; Fritz
et al., 2006; Lu et al., 2011; Wang et al., 2013, 2014; Zhen et al.,
2014d), while posing great challenge for traditional segmen-
tation based techniques (Cocosco et al., 2008). The first at-
tempt to direct bi-ventricular volume estimation was provided
in (Wang et al., 2014) which employs a Bayesian model. Giv-
en an input MR image with bi-ventricles, the model searches
similar images in a set of templates with manually segmented
LV/RV, and the similarity is measured by computing the dis-
tance on simple handcrafted features. The volume of cardiac
ventricles in the input image is then simply calculated as the

weighted average over the templates. The method did not ful-
ly model the statistical relationship between image features and
cardiac ventricular volumes and is far from a capable tool of
direct estimation.

The method suffers from several severe drawbacks. It 1) re-
lies on a simplified assumption to model the relationship be-
tween volumes of the LV and RV in a cardiac cycle by an em-
pirical linear function: Vol(RV) = aVol(LV) + b, 2) does not
generalize well on more diverse datasets with large number of
subjects, and 3) is computationally expensive to match a test
point against all templates which are all the training samples,
and typically requires uniformly-sampled training data for ac-
curate results (Huang et al., 2011).

To deal with the above-mentioned issues, we proposed using
random forests (Breiman, 2001) for direct bi-ventricular vol-
ume estimation in our conference version (Zhen et al., 2014d),
in which bi-ventricular volume estimation is formulated as a
regression problem. Multiple complementary features includ-
ing pyramid Gabor features (PGF) (Zhen and Shao, 2013), his-
togram of gradients (HOG) (Dalal and Triggs, 2005) and in-
tensity are carefully designed to represent cardiac MR images.
Like (Afshin et al., 2012a; Wang et al., 2014), the method stil-
l relies on handcrafted feature representation by feature engi-
neering (Bengio et al., 2013), which cannot be adapted to learn
optimal representation from data and are unable to extract the
discriminative information related to the specific domain (Ben-
gio et al., 2013).

In general, existing direct methods (Afshin et al., 2012a;
Wang et al., 2014) are still far from being a satisfactory tool
for cardiac volume estimation. They might perform well on
datasets of a small number of subjects due to overfitting while
the performance cannot be guaranteed on datasets of a large
number of subjects which present greater variability of images
therefore raise more challenge (Petitjean and Dacher, 2011).

Towards full capacities of direct estimation, we propose a
general fully learned-based framework for joint bi-ventricular
volume estimation which removes user inputs and unnecessary
assumptions. The framework consists of two main stages: car-
diac image representation by multi-scale convolutional deep
networks and joint bi-ventricular volume estimation by random
forests. The multi-scale convolutional deep networks take ad-
vantages of deep learning as powerful tool for unsupervised
representation learning and leverage the abundant unlabeled da-
ta. Random forests as discriminative learning can effective-
ly capture the relationship between image appearance and bi-
ventricular volumes, and more importantly they are able to au-
tomatically extract the most discriminate features for each ven-
tricle due to the innate nature of feature selection.

1.2. Cardiac image representation learning
Cardiac image representation serves as a fundamental role

in cardiac function analysis and is typically obtained by fea-
ture engineering in the existing methods (Montillo et al., 2004;
Qian et al., 2006; Zheng et al., 2008; Chen et al., 2010; Garcia-
Barnes et al., 2010; Afshin et al., 2012a; Punithakumar et al.,
2013; Wang et al., 2014; Zhen et al., 2014d). Feature engi-
neering relying on handcrafted features is labor-intensive and
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Figure 1: The illustration of MR images with bi-ventricles.

suffers from the weakness of being unable to extract and or-
ganize representative information from the data (Bengio et al.,
2013; Tang et al., 2014). Bi-ventricles exhibit great variability
of cardiac images from gray levels to structure shapes as shown
in Fig. 1. The shape of the two ventricles varies across patients,
over time and along the long axis, which makes it extremely dif-
ficult for accurate analysis of bi-ventricular volumes. Since bi-
ventricular volume estimation poses more challenge than pre-
vious tasks (Afshin et al., 2012a), these handcrafted image rep-
resentations by feature engineering are not able to capture the
variability of bi-ventricles due to ignoring the specific domain
knowledge in data, especially on dataset of larger number of
subjects.

A data-driven representation directly learned from unlabeled
data is highly desirable and can capture underlying explanatory
factors (Bengio et al., 2013; Zhen et al., 2014b). As highlighted
in (Bengio et al., 2013) that being less dependant on feature en-
gineering, data-driven representation learning is able to capture
high variability of images, especially for cardiac images with
bi-ventricles presenting combinatorial variations.

As a powerful state-of-the-art unsupervised feature learning
technique, deep learning algorithms suit medical applications
well due to the availability of abundant sample images without
labels and have recently started to generate increasing attention-
s in medical image analysis (Cireşan et al., 2013; Carneiro and
Nascimento, 2013; Prasoon et al., 2013), Convolutional deep
learning networks (Krizhevsky et al., 2012; Turaga et al., 2010;
LeCun et al., 1998; Lee et al., 2009; Petersen et al., 2014), one
of the most representative deep learning algorithms, are effec-
tive techniques to retain topological structure, e.g., 2D layout
of pixels, and can be used to capture the anatomical structure of
bi-ventricles in cardiac images.

To handle the great variability of bi-ventricles, we propose
using a multi-scale convolutional deep belief network (MCDB-
N) to learn cardiac image representations (Shin et al., 2013; Pe-
tersen et al., 2014). By combining the strengths of both multi-
scale analysis (Zhen et al., 2013; Shao et al., 2014; Zhen et al.,
2014a) and deep learning, the MCDBN fits well for cardiac im-
age representation with bi-ventricles. The MCDBN benefits
representation learning of cardiac images in three folds: It 1)
can, to a large extent, retain structural layouts in cardiac images
which are the most important features of bi-ventricles; 2) can be
efficiently trained due to the weight sharing which also allows
us to use a large set of unlabeled data; 3) can detect sufficient
complementary features by multi-scale filtering which provides
a rich and effective representation of bi-ventricles. The MCDB-
N leverages the strength of convolution DBN in unsupervised

representation learning and more importantly allows us to use
a large amount of unlabeled data which is abundantly available
in medical image analysis.

1.3. Bi-ventricular volume estimation

The challenges that arise from the complex functional and
geometrical interference and interdependency between the LV
and RV lead to a high-dimensional representation. Regression
forests (Breiman, 2001) are capable of modeling complex rela-
tionships between high-dimensional input features and contin-
uous outputs. They have been successfully applied to various
computer vision tasks (Shotton et al., 2013; Gall et al., 2011;
Zhen et al., 2015b), and recently started to attract interest in
medical image analysis (Criminisi et al., 2011). We choose
random forests to work on top of image representations from
MCDBN to fulfill bi-ventricular volume estimation due to the
strong ability of feature selection and efficient implementation.
Random forests are well-suited to direct and joint bi-ventricular
volume estimation, which has been shown in our preliminary
work (Zhen et al., 2014d).

Random forests (Breiman, 2001) are an ensemble of decision
trees which combine the ideas of bagging and the random fea-
ture selection which benefit our learning-based bi-ventricular
volume estimation in three folds: They 1) effectively deal with
the high-dimensional representation due to innate ability to s-
elect discriminative features (Criminisi and Shotton, 2013); 2)
avoid overfitting while providing accurate prediction by inject-
ing randomness (Biau, 2012); 3) are specifically fit for bi-
ventricular volume estimation due to the intrinsic nature of
feature selection (Breiman, 2001). With the above properties,
random forests offer a prime regressor for direct and joint bi-
ventricular volume estimation.

1.4. Contributions

We propose a general, fully learning-based framework to
realize the full capacities of direct estimation of cardiac ven-
tricular volumes by combining the strengths of both genera-
tive (for representation) and discriminant (for regression) learn-
ing. Specifically, 1) we propose using multi-scale convolutional
deep networks for unsupervised cardiac image representation-
s learning from unlabeled data; and 2) bi-ventricular volume
estimation is formulated as a regression problem and random
forests are employed for efficient volume estimation. Our meth-
ods provide a new framework from the perspective of regres-
sion for cardiac ventricular volume estimation which can also
be used for other organ volume estimation and extensive mod-
el parameter estimation problems, e.g., model personalization
(Marchesseau et al., 2013; Zettinig et al., 2014).

2. Methodology

The flowchart of the general framework is illustrated in
Fig. 2. In the left block, the multi-scale convolutional deep
belief networks learn a set of multi-scale data-driven feature
detectors from totally unlabeled data for cardiac image repre-
sentations. In the right block, random forests are trained on
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Figure 2: The flowchart of the proposed unsupervised feature learning and random forest regression. [Left block]: Unsupervised cardiac image representation
learning by multi-scale deep networks from a unlabeled dataset. [Right block]: Training regression forests and on labeled data. [Bottom block]: Joint bi-ventricular
volume estimation with the trained regressors.

Figure 3: The schematic diagram of unsupervised feature learning with the proposed multi-scale deep networks. The three blocks from bottom to top are the input
MR images, a multi-scale convolutional RBM and an RBM.
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labeled data for bi-ventricular volume estimation. In the bot-
tom block, test images go through learned feature detectors and
trained regressors successively and bi-ventricular volumes are
jointly estimated.

2.1. Representation learning by multi-scale deep networks

The proposed multi-scale convolutional deep belief network
(MCDBN) is a three-layer deep network composed of a multi-
scale convolutional restricted Boltzmann machine (MCRBM)
and an RBM as shown in Fig. 3. Our MCDBN is inspired
by convolutional deep belief nets (CDBNs) introduced by Lee
et al. (Lee et al., 2009). By combining convolutional filters
with deep belief nets, CDBNs can encode local structures of
images and therefore achieve more descriptive representations.
However, only a single scale of filters are learned in CDBNs,
which limits the ability of feature detection. By learning multi-
scale filters, our MCDBN further enhances the effectiveness of
representation learning especially for cardiac images with bi-
ventricles that exhibit complex geometrical variations.

2.1.1. Restricted Boltzmann machine (RBM)
A restricted Boltzmann machine (RBM) is a two-layer, bi-

partite, undirected graphical model. RBMs are fully connected
with a group of binary hidden nodes h, a group of visible nodes,
which are either binary or real-valued, and symmetric connec-
tions between h and v represented by a weight matrix W. The
weight W and biases b and c of an RBM can be learned by
contrastive convergence (CD) (Hinton, 2002).

The RBMs can be stacked to form a deep belief network
(DBN), a generative model with multiple layers, which demon-
strates high ability of representation learning. In DBN, two ad-
jacent layers are fully connected and no nodes in the same layer
are connected. The DBN can be trained in a greedy layerwise
way by treating each layer as an RBM (Hinton et al., 2006;
Bengio et al., 2007), which works well in practice. Unlike DB-
Ns which treat all the pixels in an image equally, the CDBNs
model the topology of images by operating convolutional ker-
nels on local neighborhoods and can naturally preserve image
topological information (LeCun et al., 1998) which is extremely
important especially for medical images with anatomical struc-
tures.

2.1.2. Multi-scale CDBNs
A convolutional RBM (CRBM) proposed by Lee et al. (2009)

is composed of two layers, but the weights of the connections
between visual and hidden layers are shared among all the lo-
cations in an image. The input visual layer consists of an array
of NV × NV which in this work is real-valued. The hidden lay-
er is composed of K groups each of which is a binary array of
NH × NH . Each of the K group in the hidden layer is associated
with an NW × NW filter.

The energy function for a CRBM is defined as

E(v, h) =−
K∑

k=1

NH∑
i, j=1

NW∑
r,s=1

hk
i jW

k
rsvi+r−1, j+s−1 (1)

Figure 4: Illustration of the filters (feature detectors) of different sizes associat-
ed with the feature maps. In the top row are the leaned filters and in the bottom
row are the corresponding feature maps.

−
K∑

k=1

bk

NH∑
i, j=1

hk
i j − c

NV∑
i, j=1

vi j, (2)

where bk is the bias for each group and c is the bias shared by all
visible nodes. The energy function can be represented in terms
of convolution as

E(v,h) =
K∑

k=1

hk • (W̃ ∗ v) −
K∑

k=1

bk

∑
i, j

hk
i, j − c

∑
i, j

vi j (3)

In contrast to the original CRBM, we propose multi-scale CRB-
M (MCRBM) with filters of different sizes, which means we
have S × K filters with S the number of scales.

By stacking an RBM on top of the proposed MCRBM, we
obtain a three-layer network, i.e., the multi-scale convolutional
deep belief network (MCDBN). Totally unlabeled cardiac MR
images are fed into the MCRBM to learn a set of multi-scale
filters, i.e., feature detectors. The feature maps from CRBM
go further through an RBM to obtain more compact represen-
tations.

2.1.3. Learning multi-scale filters
The proposed MCDBN provides an effective representation

learning of cardiac images, which creates a solid basis for sub-
sequent bi-ventricular volume estimation. The complexities of
bi-ventricles residing in different scales can be effectively cap-
tured by the multi-scale filters learned by the proposed deep
networks. Larger scales of filters extract the simplex structure
of the LV, while finer filters with smaller sizes are capable of
detecting the sophisticated crescent-shaped of the RV which is
much more complex than the LV.

Specifically, we learn 2 filters for each of 3 scales: 17×17,
13×13 and 9×9. Fig. 4 illustrates the learned multi-scale fil-
ters (in top row) and the corresponding feature maps (in the
bottom row) outputted from the filters. As can be seen that
the learned filters have successfully detected oriented and lo-
calized edges (Poultney et al., 2006; Lee et al., 2009) which
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Figure 5: Illustrated are the random forests comprised of n decision trees {T1, . . . , Ti, . . . , Tn} learned from the training set. Test images can be quickly predicted
by several simple comparison operations. X# indicates the #-th feature that are selected for the associated splitting notes. Test images go through each tree in the
forests and the results outputted from all the trees are combined as the final prediction.

are the most representative features of cardiac ventricles. The
learned feature maps intensify the main shapes and contours
of bi-ventricles while removing the unrelated regions such as
background, which provides an informative and discriminative
representation, especially for images with bi-ventricles.

2.2. Regression forests
Mathematically, given a multivariate input v which in our

case is the feature vector extracted from an image, our aim is
to associate with a continuous multi-variate label y, i.e., the bi-
ventricular cavity areas in images.

2.2.1. Training
We build decision trees using the adapted algorithm from

(Breiman, 2001). Each internal node j of a tree is associated
with a split function. The training process is to construct each
tree with a randomly selected training subset. Note that only a
subset of features are used for training each decision tree, which
are fixed for prediction.

The split function at a split node j is formulated as a function
with binary outputs

h(v, θ j) : Rd × T → {0, 1} (4)

where v is the input feature vector, T represents the space
of all split parameters (Criminisi and Shotton, 2013), and θ j
is the function parameter associated with the j-th node and
can be trained by minimizing a least-squares error function I
(Breiman, 2001) at the j-th split node:

θ j = arg max
θ∈T

I(S j, θ) (5)

where S j is a subset of training samples associated with the j-th
node. The data point v arriving at the split node is sent to its left
or right child node according to the result of the split function.
An example of trained random forests is shown in Fig. 5 which
will be used for prediction of new input images.

2.2.2. Prediction
As shown in Fig. 5, we pass a test image v through each

tree starting from the root of each decision tree Ti, send to the
left/right child by applying the split function, and stop when v
reaches a leaf node of the tree. The simple comparison opera-
tion on each split node makes the prediction extremely fast and
efficient. Given the t-th tree in a forest, the associated leaf out-
put takes the form of a density probability function pt(y|v). The
forest output is the average over all tree outputs

p(y|v) =
1
T

T∑
t=1

pt(y|v) (6)

where y is the continuous multi-variate label and T is the num-
ber of trees in the forest.

2.2.3. Feature selection
Random forests have the innate ability to select the most rep-

resentative features closely related to cardiac volumes. The fea-
ture selection can be reflected by the feature importance ranked
by random forests in the training stage (Breiman, 2001). Fea-
tures are assigned with different values of importance according
to their discriminative ability which is measured by regression
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Figure 6: Illustration of feature importance learned by random forests. The
magnitudes at corresponding locations indicate the importance of the features
for volume estimation of the left and right ventricles, respectively. Features
with large values of magnitudes are ranked as more important than features
with small values.

errors. Features with larger values are ranked as more impor-
tant than features with small values. Our experiments have in-
dicated that random forests have a strong capacity of feature
selection for the estimation of the LV and RV volumes. The re-
sults are shown in Fig. 6 from which we can easily observe that
regions that are closely related to the LV and RV, respective-
ly are successfully detected with high importance by random
forests, while insignificant regions are largely removed. More
importantly, the selected features mostly fall on the key regions
such as edges, boundaries of the ventricles that can distinguish
different cardiac ventricular volumes.

2.2.4. Tree numbers
The effects of different numbers of trees in random forests

are illustrated in Fig 7. The performance keeps going up with
the number of trees from 100 to 500. The computational cost
will also increase with the number of trees. In our experiments,
we use 500 trees as the final setting to keep the balance between
performance and computational burden.

3. Experiments and results

3.1. Datasets and settings

In our experiments, two sets of subjects with 2D short-
axis cine MR images are used including 2820 unlabeled im-
ages from 47 subjects for unsupervised feature learning and
6000 labeled images from 100 subjects for the validation of
bi-ventricular volume estimation. The subjects are collected
from 3 hospitals affiliated with two health care centers (Lon-
don Healthcare Centre and St. Joseph’s HealthCare) and 2 ven-
dors (GE and Simens) including both health and diseased cas-
es. The pathologies are extremely diverse including regional
wall motion abnormalities, myocardial hypertrophy, mildly di-
lated RV, atrial septal defect, LV dysfunction, mildly enlarged
LV, decreased ejection fraction in most cases, etc. Each subject
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Figure 7: The performance of random forests with different numbers of trees.

contains 20 frames throughout a cardiac cycle. In each frame,
three representative slices, i.e., apical, mid-cavity and basal, are
selected following the standard AHA prescriptions (Cerqueira
et al., 2002) for validation, and their manual segmentations are
used as the benchmark.

To benchmark with existing direct methods (Wang et al.,
2014; Zhen et al., 2014d), we estimate cavity areas of the LV
and RV in MR images, and the volumes are computed by inte-
grating LV/RV cavity areas along the sagittal direction perpen-
dicular to the short axis. A single cropped region of interest
(ROI) rather than two individual ones is placed to enclose the
LV and RV in an MR image, which can be obtained automat-
ically (Petitjean and Dacher, 2011). The cropped images are
then resized into 60 × 60 pixels as the inputs.

The MCDBN has been conducted on the unlabeled dataset
of 47 subjects to obtain filters which are used to create feature
representations of all images. For volume estimation, we em-
ploy a leave-one subject-out validation approach, i.e., 100-fold
cross validation on the labeled dataset of 100 subjects. The
performance is evaluated by comparing with the golden stan-
dard manual segmentation using absolute estimation errors and
correlation coefficients. The correlation coefficient is used to
measure the linear correlation between ground truth and direct
estimation.

3.2. Implementation details
For the MCDBN, we follow the original work (Lee et al.,

2008, 2009; Hinton et al., 2006; Hinton, 2010) using a learning
rate of 0.0001 for RBMs and sparsity of 0.01 for CRBMs. As
suggested in (Hinton, 2010), we start with a momentum of 0.5
and once the large initial progress in the reduction of the recon-
struction error has settled down to gentle progress, increase the
momentum to 0.9. We use 2 filters of each scale to create fea-
tures maps as the inputs to the RBMs. The final feature vector
as the image representation is of 3000 dimensions which is fed
into regression forests for bi-ventricular volume estimation.

For random forests, we set the number of features used in
splitting note as 500, and since the number of trees in forests is
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Figure 9: Comparison of EFs obtained by manual segmentation (blue) and the proposed method (red) for the LV (upper) and RV (bottom), respectively.
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Figure 8: The correlation coefficients between the volumes obtained by the
proposed method and manual segmentation for the LV and RV, respectively.

a key parameter which determines the regression performance,
we experiment with different values to investigate its effects.

3.3. Estimation results

We apply the proposed methods to cardiac bi-ventricular vol-
ume estimation and calculation of ejection fractions (EF) with
the estimated volumes. The EF is an important cardiac func-
tional parameter and predictor of prognosis and widely used in

clinical analysis. The EF is computed by

EF =
Vd − Vs

Vd
, (7)

where Vd and Vs denote the largest (end-diastolic) and the s-
mallest (end-systolic) volumes of a ventricle in a cardiac cycle,
respectively.

3.3.1. Bi-ventricular volumes
The effectiveness of the proposed method is demonstrated by

the outstanding performance on a large dataset with 6000 MR
images from 100 subjects for both LV and RV. The estimated
volumes by the proposed method are measured by comparing
with those by manual segmentation using a leave-one-subject-
out cross validation. The correlations between estimated and
manually obtained volumes are depicted in Fig. 8 for the LV
and RV, respectively. Despite of the challenges in joint estima-
tion of bi-ventricular volumes, the proposed method achieves a
correlation coefficient of 0.921 for the LV, and can yield 0.908
for the RV which has much greater geometrical complexity than
the LV. The high estimation accuracies with low volume esti-
mation errors, i.e., 0.010 ± 0.013 (LV) and 0.014 ± 0.012 (RV),
indicate that the proposed method can be practically used in
clinical cardiac function analysis.

3.3.2. Ejection fraction
As shown in Fig. 9, we compare EFs obtained from estimated

volumes with those from manual segmentation by human ex-
perts. The EFs from the estimated volumes provide very close
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Table 1: The correlation coefficients with different sizes of learned filters.

Filter sizes 17 × 17 13 × 13 9 × 9 Multiple scales

LV 0.899 0.885 0.873 0.921
RV 0.869 0.875 0.889 0.908

approximations for both the LV and RV with a large propor-
tion equal to their counterparts obtained manually. Compared
to segmentation based methods, the estimation errors of EFs
are relatively low: 0.0387 ± 0.0330 and 0.0455 ± 0.0347 for
the LV and RV, respectively. The high estimation accuracies on
both the LV and RV will be extremely important for assessmen-
t of cardiac functions, which indicates the potential use of the
proposed method for cardiac disease diagnosis.

3.4. Parameter evaluation

To look further into the proposed method, we have also in-
vestigated the performance of the learned filters with different
scales used in our experiments.

3.4.1. Multi-scale filters
The advantage of the proposed multi-scale convolutional

deep network is validated by comparing with results from three
different sizes of filters as shown in Table 1. More importantly,
our results further show the complementary properties of dif-
ferent sizes of filters in the cardiac image representation. On
the LV, larger scales of filters show to be superior over smaller
ones, while on the RV, smaller scales of filters perform better.
This is reasonable since structure of the RV is more complex
than the LV, smaller scales of filters are more able to capture
these localized complex features on the RV. The multi-scale fil-
ters outperform each of single scale filters. The results confirm
that representation learning by the proposed multi-scale con-
volutional deep networks overcomes the great variability and
geometrical complexity of bi-ventricles, and validate the effec-
tiveness of multi-scale convolutional deep networks for cardiac
image representation learning in bi-ventricular volume estima-
tion.

3.5. Comparison

The performance of the proposed method can be further
demonstrated by the comparison with existing direct estimation
methods and segmentation-based methods. Both bi-ventricular
volumes and ejection fraction are used as the measurements in
the comparison.

3.5.1. Comparison with existing direct methods
The advantage of the proposed method is further shown

by comparing with existing direct estimation methods: the
Bayesian model (Wang et al., 2014), and multiple features
(Zhen et al., 2014d) under the unified experimental settings. As
shown in Table 2, the proposed method largely outperforms the
Baysian model and multiple features both for the LV and RV by
up to 0.085 in terms of correlation coefficients and the volume

estimation errors are much -up to 37.5%- lower than both of
them. As shown in Table 3, the proposed methods produces
lower estimation errors of ejection fractions for bi-ventricles
than both the Bayesian model and multiple features.

Despite of that the RV is extremely challenging due to its
complex geometrical structures, the proposed method performs
much better than the methods in (Wang et al., 2014; Zhen et al.,
2014d) using handcrafted features, which shows the effective-
ness of the proposed multi-scale deep networks for cardiac im-
age representation learning. The better performance than the
Bayesian model in (Wang et al., 2014) shows the advantages
of the proposed method by formulating volume estimation as a
regression problem which incorporates learning stages. The su-
perb performance over multiple features in (Zhen et al., 2014d)
demonstrates the effectiveness of unsupervised representation
learning by the proposed multi-scale deep networks. More-
over, the outstanding performance indicates that the proposed
method can be practically used in clinical cardiac diagnosis.
Note that the Bayesian model has achieved high accuracy prob-
ably because of using a relative small size of dataset with only
56 subjects which can not capture the huge variability of car-
diac ventricles. In addition, the Bayesian model relies on the
unproven assumption that LV and RV volumes are linearly cor-
related during a cardiac cycle, which however does not always
hold in diseased cases. Our dataset contains 100 subjects (n-
early twice sizes of their dataset) exhibit sufficiently inter- and
intra-subject variabilities, especially due to the presence of di-
verse pathologies.

3.5.2. Comparison with segmentation-based methods
To demonstrate the superiority of the proposed direct esti-

mation method over conventional segmentation-based methods,
following the work (Wang et al., 2013), we conduct a compar-
ison with two representative segmentation methods including
level set (Ayed et al., 2009a) and graph cut (Ayed et al., 2009b).
As shown in Table 2 and 3, on our dataset the proposed method
largely outperforms graph cut and level set in terms of both bi-
ventricular volumes and ejections fractions. Moreover, neither
level set or graph cut are applicable to the RV for volume es-
timation. Our method can be flexibly used for either a single
ventricle or joint bi-ventricles.

4. Discussion

Direct estimation, in general, replaces tedious and unreliable
segmentation, and focuses on the ultimate goal of volume esti-
mation. The proposed direct estimation method not only solves
a dual estimation problem but also for the first time formulates
it as a regression framework. This new framework substantial-
ly outperforms existing segmentation based and direct method-
s, and more importantly offers a more compact and exquisite
mathematical formulation of regression, which is flexible and
easily extendable to other applications.

The effectiveness of the proposed method stems from the t-
wo key incorporated components: unsupervised representation
learning and random forests regression which are suited well
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Table 2: The comparison of estimation errors for bi-ventricular volumes.

Correlation coefficients Volume estimation errors
Methods LV RV LV RV

Our method 0.921 0.908 0.010 ± 0.011 0.014 ± 0.012
Baysian model (Wang et al., 2014) 0.861 0.823 0.016 ± 0.019 0.018 ± 0.013

Multiple features (Zhen et al., 2014d) 0.870 0.853 0.012 ± 0.011 0.017 ± 0.016
Level set (Ayed et al., 2009a) 0.803 - 0.036 ± 0.025 -
Graph cut (Ayed et al., 2009b) 0.835 - 0.029 ± 0.027 -

Table 3: The comparison of estimation errors for ejection fraction.

Methods Level set Graph cut Baysian model Multiple features Our method

LV 0.110 0.097 0.055 0.047 0.0387
RV - - 0.071 0.059 0.0455

to cardiac ventricular volume estimation and medical image
analysis. Since unlabeled imaging data is always abundantly
available in medical image analysis, unsupervised representa-
tion learning allows us to use a large of amount of unlabeled
data to obtain more faithful and informative data-driven repre-
sentations. Random forests provide an effective tool for cardiac
bi-ventricular volume estimation due to its innate ability of fea-
ture selection mechanism and computational efficiency by sub-
sampling and boosting.

The proposed method shows advantages over both conven-
tional segmentation based methods and other recently-proposed
direct estimation methods.

4.1. Proposed method vs. segmentation based methods

The proposed method possesses attractive advantages over
previous cardiac ventricular volume estimation using segmen-
tation based methods. Cardiac ventricular volume estimation
has been a challenging task. Most of conventional segmenta-
tion based methods rely on the unreliable assumption that car-
diac ventricles are supported by edges and region intensity ho-
mogeneity. However, edges of cardiac ventricles are not always
consistently visible along the entire contour due to overlapping
of anatomical structures and noise, etc., and the homogeneity is
severely violated due to the complex image textures and appear-
ances, especially with the presence of pathology. In addition,
existing automatic segmentation methods are mostly restricted
to the LV. RV segmentation remains an unsolved problem not to
mention multiple ventricles, e.g., bi-ventricles and four cham-
bers. Our direct estimation discovers the relationship between
image appearances and cardiac volumes by statistical learning
from annotated data, which significantly outperforms two typ-
ical segmentation methods: level set and graph cut as indicat-
ed in experimental results. In contrast to segmentation based
methods, our method as direct estimation 1) removes the inter-
mediate and always tedious segmentation by either manual or
automatic methods, achieving more accurate and efficient esti-
mation 2) can naturally handle the cases without consistently

strong edge and of region inhomogeneity, guaranteeing the ap-
plicability in clinical practise;; and 3) is able to flexibly deal
with both single and multiple ventricles, showing great gener-
ality to other organ volume estimation.

4.2. Proposed method vs. existing direct methods

The proposed method also demonstrates more merits in con-
trast to other recently-proposed direct estimation methods. Our
method is a fully automatic without relying on any assumptions,
user inputs and initialization. By leveraging advanced machine
learning techniques, i.e., unsupervised representation learning
and random forests regression, our method achieves the ful-
ly capacity of direct estimation, showing much better perfor-
mance on the largest datset as indicated in experimental results.
1) Instead of using ineffective handcrafted features in previous
methods, our method learns data-driven representations which
can effectively capture the characteristics of objects, e.g., car-
diac ventricles, to achieve optimal representations for volume
estimation; 2) By formulating bi-ventricular volume estimation
as a regression problem, our method achieves more accurate
estimation than previous methods of no learning stages, e.g.,
template matching (Wang et al., 2014); and 3) By using pow-
erful random forests for regression, our method can effectively
handle large-scale datasets without overfitting and promises the
practical use of our method in clinical applications.

4.3. Critical analysis

While the proposed method has been validated on a large
dataset with highly diverse cases, the pros and cons of the pro-
posed method come from the same fact that no explicit contour
is provided. Without relying on contouring, the proposed di-
rect estimation method is able to effectively handle challenges
in conventional segmentation based methods. Meanwhile, it
would pose a learning curve to those who are used to contouring
for validation which, however, can be easily shortened by pro-
viding more measurement through relating to human percep-
tion and intuition: 1) Due to the temporal coherence, plotting
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the volume variation cross a cardiac cycle can provide direct
mutual validation of volumes in different frames; and 2) Due
to the anatomical constraints between adjacent slices along the
long axis, plotting the area distributions of all slices can also
help check the results.

5. Conclusion

In this paper, we have presented a fully learning based
method for direct estimation of cardiac bi-ventricular volumes.
Our method takes advantages of both generative and discrimi-
nant learning, i.e., unsupervised representation learning and su-
pervised volume estimation. We have evaluated it on a large set
of dataset with 6000 images from 100 subjects using a leave-
one-subject-out cross validation. The proposed method pro-
duces high correlations with ground truth and outperforms ex-
isting direct estimation methods, showing its effectiveness for
cardiac ventricular volume estimation. The comparison with
segmentation based methods demonstrates the superiority of
our direct method for cardiac bi-ventricular volume estimation.

More importantly, discriminant learning via random forests
regression allows to deploy advanced machine learning tech-
niques to facilitate cardiac functional analysis, which provides
an effective tool to automate analysis of medical imagining data
and therefore enables accurate and efficient diagnosis in clini-
cal practise (Wang and Summers, 2012). The proposed estima-
tion framework can be easily extended to other applications for
volume estimation, such as estimating the volume of a tumor
(Bolte et al., 2007; Heckel et al., 2014) which is still depen-
dent on segmentation, and can also be used for extensive mod-
el parameter estimation problems, e.g., model personalization
(Zettinig et al., 2014; Marchesseau et al., 2013).
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