
1. Introduction

This paper addresses image segmentation with a refer-
ence distribution. Based on the optimization of aglobal
measure of similarity between distributions, the problem
consists offinding a region in an image, so that the distribu-
tion of image data within the region most closely matches
a given model distribution. As several recent studies have
shown [1, 2, 3, 4, 5, 6, 7, 8], the use of global measures
outperforms standard techniques based onpixelwise infor-
mation in the contexts of image segmentation and object
tracking. Furthermore, segmentation with a reference distri-
bution can yield robust region-based measures for image re-
trieval [1]. Possible measures include the Kullback–Leibler
divergence [6] and the Bhattacharyya measure [2, 3, 4, 7].
However, the latter has shown superior performances over
other criteria [3, 7]. Outstanding theoretical properties of
the Bhattacharyya measure were also studied in information

theory [14], and demonstrate its wide potential for applica-
tions.

Unfortunately, optimization of a global similarity mea-
sure, for instance the Bhattacharyya measure, with respect
to segmentation isNP-hard, and the problem has been com-
monly addressed with local, stepwise optimization proce-
dures. In this connection, segmentation with a reference
distribution has been generally stated as an active contour
optimization via partial differential equations [2, 3, 4, 5, 6].
A gradientflow equation of contour evolution is derived in
order to increase the similarity between the region within
the contour and a given model, thereby leading to a local

view image segmentation as a label assignment following
the discrete optimization of a cost function, have recently
been of intense interest because they can guarantee global
optima and numerical robustness, in nearly real-time. Sev-
eral studies have shown that graph cut optimization can be
quite effective in various computer vision problems, for in-
stance, image segmentation [16, 17, 18], object tracking
[19], motion estimation [20], visual correspondence [21],
and restoration [11]. Most of existing graph cut segmen-
tation methods optimize a sum over all pixels of pixel or
pixel-neighborhood dependent data and variables. Variables





Finally, combining this inequality with (14) gives the fol-
lowing upper bound ofB(L)
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Now notice the following inequality∀α ∈ [0, 1]
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Combining (18) and (19) provesproposition 1.

Definition 1: A(L, L̂) is called auxiliary function of cost
function F(L) if it satisfies the following conditions:

F(L) ≤ A(L, L̂) (20)

A(L,L) = F(L) (21)

Auxiliary functions are commonly used in the Nonnegative
Matrix Factorization (NMF) literature for optimization [23].
Rather than optimizing the cost function, one can optimize
iteratively an auxiliary function of the cost function. At
each iterationt, this amounts at optimizing over thefirst
variable

L(t+1) = arg min
L

A(L,L(t)) (22)

Thus, by definition of auxiliary function and minimum, we
obtain the following monotonically decreasing sequence of
the cost function

F(L(t)) = A(L(t),L(t)) ≥ A(L(t+1),L(t)) ≥ F(L(t+1))
(23)

Proposition 2: For α = 0 , the following function is an
auxiliary function of F(L)

A(L,La, α) = J (L,La, α) + S(L) (24)

Proof of proposition 2: To proveproposition 2, it suf-
fices to verify conditions (20) and (21) forA andF . Condi-
tion (20) follows directly fromproposition 1. For Condition
(21), it suffices to see that whenLa = L, δLa
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which verifies condition (21).
Proposition 2 instructs us to consider the following

procedure for minimizing functionalF .

Minimization procedure:

begin

• Initialize the auxiliary labeling so that the initial
region corresponds to the hole image domain

La(p) = L(0)(p) = 1 ∀p ∈ P

• Initialize α: α = α0 with 0 < α0 < 1

repeat
1. Optimize the auxiliary function over L

L(t) = arg min
L:R L

1 ⊂R La
1

A(L,La, α)

2. Update La byLa = L(t)

3. Decrease α: α = αρ with ρ > 1
until Convergence ;

end

Convergence proof: When α approaches zero,
A(L,La, α) approaches an auxiliary function of cost
function F and, therefore, the above procedure leads to
a monotonically decreasing sequence ofF . This comes
directly from (23). Since the cost function is lower bounded
(because the Bhattacharyya measure is upper bounded by
one), the algorithm converges.

Optimization in step 1 with a graph cut: Now notice
that the auxiliary functionA(L,La, α) in step 1 of the
optimization procedure is the sum ofunary and pairwise
(submodular) penalties. In combinatorial optimization, a
global optimum of such sum can be computed efficiently
in low-order polynomial time with a graph cut by solving
an equivalent max-flow problem [10]. Furthermore, the
condition that the solution should verifyRL

1 ⊂ RLa

1 can
be imposed easily by adding a hard constraint [16]. We
used the well-known max-flow algorithm of Boykov and





Obtained measureB(P L opt , M ) (mean± std) Initial measureB(P L (0) , M ) (mean± std) Maximum measure
0.9984± 0.0016 0.4820± 0.1186 1

Table 2. Evaluation of the optimality of the algorithm on the GrabCut database (50 images): statistics (mean and std) of the optimal
Bhattacharyya measures obtained with BMGC (B(P L opt , M )) and the initial measure (B(P L (0) , M )). The optimal measures are very
close to1, which is the maximum possible value. This demonstrates that BMGC yields nearly global optima with few iterations.

Method BMGC Active contour optimization [2, 3, 4]
Number of KDEs per image (mean) 4 1737

Run time per image (mean) 3.51 secs 631secs
Error 0.24% 2.49%

Obtained Bhattacharyya measure (mean± std) 0.9984± 0.0016 0.9791± 0.01

Table 3. Comparisons with active contour optimization [2, 3, 4] on the GrabCut database: number of Kernel Density Estimations per
image (mean), run time per image (mean), error (percentage of misclassiÞed pixels), and obtained Bhattacharyya measure (the higher the
measure, the more optimal the solution). BMGC leads to signiÞcant improvements in regard to segmentation accuracy, optimality, and
computational efÞciency.It relaxes the need of a large number of updates of the kernel densities and the corresponding measures.

that BMGC leads to signiÞcant improvements in regard to
computational efÞciency, segmentation accuracy, and opti-
mality. BMGC has an important computational advantage
over active contour methods. It leads to a signiÞcant de-
crease in computational load because it does not requires
a large number of updates of computationally onerous ker-
nel densities. With BMGC, the solution is reached after4
Kernel Density Estimations (KDEs), whereas the average
number of KDEs for active contour optimization is1737
(mean). BMGC took an average run time equal to3.51secs
to compute nearly global optima corresponding approxi-
mately to the maximum possible value of the Bhattacharyya
measure, whereas active contour optimization took631sec-
onds, converged to a less optimal Bhattacharyya measure,
and yielded a higher error (refer to table 3 for details).

Object tracking examples:The example in Figure 3 de-
picts the tracking of an object with an arbitrary shape in the
tennis table sequence. Given the model distribution learned
from a manual segmentation of theÞrst frame, the target
object is recovered with BMGC in subsequent frames. In
frame30, the target object undergoes signiÞcant variations
in shape/size in comparison to theÞrst frame. The proposed
method handles implicitly these variations because no as-
sumptions were made as to the size, shape, or position of
the target region.
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