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a b s t r a c t

The ν-Support Vector Regression (ν-SVR) is an effective regression learning algorithm, which has the
advantage of using a parameter ν on controlling the number of support vectors and adjusting the width
of the tube automatically. However, compared to ν-Support Vector Classification (ν-SVC) (Schölkopf et al.,
2000), ν-SVR introduces an additional linear term into its objective function. Thus, directly applying the
accurate on-line ν-SVC algorithm (AONSVM) to ν-SVR will not generate an effective initial solution. It is
the main challenge to design an incremental ν-SVR learning algorithm. To overcome this challenge, we
propose a special procedure called initial adjustments in this paper. This procedure adjusts the weights
of ν-SVC based on the Karush–Kuhn–Tucker (KKT) conditions to prepare an initial solution for the
incremental learning. Combining the initial adjustmentswith the two steps of AONSVM produces an exact
and effective incremental ν-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence
of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the
initial adjustments), respectively. The experiments on benchmark datasets demonstrate that INSVR can
avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution.
The results also show that INSVR is faster than batch ν-SVR algorithms with both cold and warm starts.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world regression tasks, such as time-series prediction
(e.g. Cao and Tay (2003); Lu, Lee, and Chiu (2009)), training data
is usually provided sequentially, in the extreme case, one example
at a time, which is an online scenario (Murata, 1998). Batch algo-
rithms seems computationally wasteful as they retrain a learning
model from scratch. Incremental learning algorithms are more ca-
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pable in this case, because the advantage of the incremental learn-
ing algorithms is that they incorporate additional training data
without re-training the learning model from scratch (Laskov et al.,
2006).

ν-Support Vector Regression (ν-SVR) (Schölkopf, Smola,
Williamson, & Bartlett, 2000) is an interesting Support Vector
Regression (SVR) algorithm, which can automatically adjust the
parameter ϵ of the ϵ-insensitive loss function.1 Given a training
sample set T = {(x1, y1), . . . , (xl, yl)} with xi ∈ Rd and yi ∈ R,

1 The ϵ-insensitive loss function used in SVR is defined as |y − f (x)|ϵ =
max{0, |y − f (x)| − ϵ} for a predicted value f (x) and a true output y, which does
not penalize errors below some ϵ > 0, chose a priori. Thus, the region of all (x, y)
with |{y− f (x)| ≤ ϵ} is called ϵ-tube (see Fig. 1).
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Table 3
The number of occurrences of Conflict-1, Conflict-2, SC-1 and SC-2 on the six benchmark datasets over 500 trials. Note that L, P, and G are the abbreviations of linear,
polynomial and Gaussian kernels, respectively.

Dataset Size Conflict-1 Conflict-2 SC-1 SC-2 Dataset Size Conflict-1 Conflict-2 SC-1 SC-2
L P G L P G L P G L P G L P G L P G L P G L P G

Housing

10 0 0 1 0 0 0 0 0 0 2 0 1

Triazines

10 3 0 0 0 0 0 1 0 0 0 0 27
15 0 1 4 0 1 1 0 0 0 0 0 0 15 0 8 0 0 1 0 0 2 0 0 0 0
20 0 2 186 0 2 55 0 5 125 0 0 0 20 6 29 0 0 6 0 1 20 0 0 0 0
25 0 0 8 0 0 4 0 0 3 0 0 0 25 1 0 0 0 0 0 0 0 0 0 0 0
30 0 0 1 0 0 1 0 0 1 0 0 0 30 0 2 0 0 1 0 0 0 0 0 0 0

Forest
fires

10 5 3 0 2 3 0 0 0 0 0 1 1
Concrete
compressive
strength

10 13 27 14 4 4 4 0 0 0 0 0 2
15 11 12 0 1 4 0 3 0 0 0 0 0 15 20 24 66 5 4 17 2 12 0 0 0 1
20 164 289 250 29 91 178 46 123 218 0 0 0 20 57 120 284 9 22 63 25 96 219 0 0 0
25 60 22 0 12 8 0 12 3 0 0 0 0 25 32 31 73 6 11 41 0 13 24 0 0 0
30 62 10 0 8 2 0 5 0 0 0 0 0 30 38 27 16 6 6 12 3 0 8 0 0 0

Auto
MPG

10 21 21 0 3 6 0 1 0 0 0 0 2

Friedman

10 0 0 156 0 0 61 0 0 0 0 45 4
15 38 8 2 4 1 0 2 1 0 0 0 1 15 0 0 279 0 0 64 0 2 5 0 3 0
20 95 49 14 7 6 3 28 26 11 0 0 0 20 2 0 537 0 0 125 1 0 368 0 0 0
25 34 9 0 4 0 0 6 1 0 0 0 0 25 0 0 213 0 0 98 2 4 24 0 0 0
30 18 8 0 2 1 0 2 0 0 0 0 0 30 1 0 210 2 0 0 83 0 2 0 0 0

Fig. 2. Average numbers of iterations of IA, RAIA, and SRA on the different benchmark datasets. (a) Housing. (b) Forest Fires. (c) Auto MPG. (d) Triazines. (e) Concrete
Compressive Strength. (f) Friedman. (g) Cpusmall. (h) Cadata. (i) YearPredictionMSD.

for preparing the initial solution before the incremental learning.
The initial adjustments and the two steps of AONSVM constitute
INSVR. We also prove the existence of the three key inverse

matrices, which are the cornerstone of INSVR. The experimental
results demonstrate that INSVR can successfully converge to the
exact optimal solution in a finite number of steps by avoiding








